3 research outputs found

    HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS

    Get PDF
    Rainfall prediction is one of the most challenging task faced by researchers over the years. Many machine learning and AI based algorithms have been implemented on different datasets for better prediction purposes, but there is not a single solution which perfectly predicts the rainfall. Accurate prediction still remains a question to researchers. We offer a machine learning-based comparison evaluation of rainfall models for Kashmir province. Both local geographic features and the time horizon has influence on weather forecasting. Decision trees, Logistic Model Trees (LMT), and M5 model trees are examples of predictive models based on algorithms. GWLM-NARX, Gradient Boosting, and other techniques were investigated. Weather predictors measured from three major meteorological stations in the Kashmir area of the UT of J&K, India, were utilized in the models. We compared the proposed models based on their accuracy, kappa, interpretability, and other statistics, as well as the significance of the predictors utilized. On the original dataset, the DT model delivers an accuracy of 80.12 percent, followed by the LMT and Gradient boosting models, which produce accuracy of 87.23 percent and 87.51 percent, respectively. Furthermore, when continuous data was used in the M5-MT and GWLM-NARX models, the NARX model performed better, with mean squared error (MSE) and regression value (R) predictions of 3.12 percent and 0.9899 percent in training, 0.144 percent and 0.9936 percent in validation, and 0.311 percent and 0.9988 percent in testing

    Optimizing Cardiovascular Disease Prediction: A Synergistic Approach of Grey Wolf Levenberg Model and Neural Networks

    Get PDF
    Background: One of the latest issues in predicting cardiovascular disease is the limited performance of current risk prediction models. Although several models have been developed, they often fail to identify a significant proportion of individuals who go on to develop the disease. This highlights the need for more accurate and personalized prediction models. Objective: This study aims to investigate the effectiveness of the Grey Wolf Levenberg Model and Neural Networks in predicting cardiovascular diseases. The objective is to identify a synergistic approach that can improve the accuracy of predictions. Through this research, the authors seek to contribute to the development of better tools for early detection and prevention of cardiovascular diseases. Methods: The study used a quantitative approach to develop and validate the GWLM_NARX model for predicting cardiovascular disease risk. The approach involved collecting and analyzing a large dataset of clinical and demographic variables. The performance of the model was then evaluated using various metrics such as accuracy, sensitivity, and specificity. Results: the study found that the GWLM_NARX model has shown promising results in predicting cardiovascular disease. The model was found to outperform other conventional methods, with an accuracy of over 90%. The synergistic approach of Grey Wolf Levenberg Model and Neural Networks has proved to be effective in predicting cardiovascular disease with high accuracy. Conclusion: The use of the Grey Wolf Levenberg-Marquardt Neural Network Autoregressive model (GWLM-NARX) in conjunction with traditional learning algorithms, as well as advanced machine learning tools, resulted in a more accurate and effective prediction model for cardiovascular disease. The study demonstrates the potential of machine learning techniques to improve diagnosis and treatment of heart disorders. However, further research is needed to improve the scalability and accuracy of these prediction systems, given the complexity of the data associated with cardiac illness. Keywords: Cardiovascular data, Clinical data., Decision tree, GWLM-NARX, Linear model function

    Proceedings of the 1st Liaquat University of Medical & Health Sciences (LUMHS) International Medical Research Conference

    No full text
    corecore